M.M.: 70

CLASS-XI CHEMISTRY (THEORY) (2023-24)

Marking Scheme/Hints to Solution

Note: Any other relevant answer, not given herein but given by the candidate be suitably rewarded.

S. No.	Value Points/Key Points		Marks Allotted to each value point/key point	Total Marks
		Section-A		
1.	(c)		1	1
2.	(a)		1	1
3.	(b)		1	1
4.	(c)	- ·	1	1
5.	(b)		1	1
6.	(b)		1	. 1
7.	(a)		1	1
8.	(c)		1	1
9.	(a)		1	1
10.	(c)		1	1
11.	(d)		1	1
12.	(c)		1	1
13.	(d)		1	1
14.	(b)		1	1

MS/Chemistry

1

15.	(c)	1	1
16.	(a)	1	1
	Section-B		
17.	The associated wavelength is obtained from de-Broglie equation:	1/2	2
	$\lambda = h/p = h/mv$		
	m = 100 g = 0.1 kg	1/2	
ш	$\frac{6.626 \times 10^{-34}}{0.1 \times 2.11 \times 10^5}$	1/2	
	$= 3.14 \times 10^{-38} \text{ m}$	1/2	
18.	(a) Na ₂ S	1	2
	(b) BeCl ₂	1	
	OR		
7	(a) $Al^{3+} < Mg^{2+} < F^- < O^{2-}$ (increasing ionic radii)	1	
	(b) I < Br< F < C(increasing electron gain enthalpy)	1	h
1	considering electron gain enthalpy to be negative.		
19.	Reduction half equation:		2
	$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr_+^{3+}7H_2O(l)$	1/2	=
	Oxidation half equation:		
	$\mathrm{Fe^{2+}} ightarrow \mathrm{Fe^{3+}} + \mathrm{e^-} \int $	1/2	
	And we add the equations together in such a way that the electrons are eliminated.		
25	$6\text{Fe}^{2+} + \text{CrO}_7^{2-} + 14\text{H}^+ \longrightarrow 6\text{Fe}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}(l)$	1	
	Note: The equation may be balanced by Half reaction method or Oxidation number method.		

20.	(a) Glycerol has a high boiling point and since in this method the external pressure is lowered, it boils at a lower temperature.	1	2
	(b) In ethanol, -OH can be placed on any carbon and that will give the same IUPAC name/Both terminal carbon only/the carbon having -OH will be numbered 1 so its the same compound.	1	
21.	The mass of the compound = 0.24 g		2
	$Mass of Mg_2P_2O_7 = 0.44 g$		
	Since 222 g of $Mg_2P_2O_7 = 62$ g of P		
	So, 0.44 g of $\mathrm{Mg_2P_2O_7}$		
	contains P = 62/222 × 0.44 g	1	
	So % P present in the compound		
	$= (62 \times 0.44 \times 100) / (222 \times 0.24)$		
	= 51.20%	1	
	Section-C		
22.	(a) For 4p orbital, $n = 4$ and $l = 1$		
	Number of angular nodes, $l=1$	1/2	
	Number of radial nodes = $n - l - 1 = 2$	1/2	
	(b) $r_n = \frac{(0.0529 \ nm)n^2}{z}$	1	
	(c) 2 electrons in an atom can have $n = 5$, $l = 2$ and $m_l = 1$	1	3
23.	(a) SF_4 has trigonal bipyramidal geometry. The lone pair is in the equatorial plane giving an overall see-saw shape.	1	
	(b) PH ₃ has Tetrahedral geometry. The central atom has one lone pair and there are three bond pairs so the shape is trigonal pyramidal.	1	
	1	1	1

	(c) SiCl ₄ has 4 bond pairs only hence shape and geometry both tetrahedral.	1	3
24.	(a) Ne is a noble gas / it has stable configuration / completely filled shells or orbitals.	1	7777
	(b) N has stable configuration as it has half filled 2p orbital hence higher I.E.	1	
	(c) Li is the most metallic among given elements as it has minimum I.E. in the period.	1	3
25.	The electronic configuration of O_2^+ according to MOT is	1	3
	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2pz)^2 (\pi 2px)^2 = (\pi 2py)^2 (\pi^* 2px)^1$		
	Bond order is = $\frac{10-5}{2} = 2.5$,
	The electronic configuration of N ₂ ⁻ according to MOT is		
	$\sigma^{1}s^{2} \sigma^{*}1s^{2} \sigma^{2}s^{2} \sigma^{*}2s^{2} \pi^{2}px^{2} = \pi^{2}py^{2}\sigma^{2}pz^{2}\pi^{*}2px^{1}$	1	
	Bond order = $(10 - 5)/2 = 2.5$		
	They have same bond order as total number of electrons in		
	bonding and antibonding MOs are the same.	1	
26.	(a) For a reaction to be spontaneous ΔG should be negative. Both ΔH and ΔS are negative, ΔG can be negative only if $T\Delta S < \Delta H$ in magnitude.		3
	$\Delta G = \Delta H - T \Delta S$		
	$\Delta G = (-) - T (-)$	1	
	This is possible only if either ΔH has a large negative value or T is so low that $T\Delta S < \Delta H$.	1/2	
	(b) Hess's Law states that if a reaction takes place in several steps then its standard reaction enthalpy is the sum of		
	the standard enthalpies of the intermediate reactions at		
	the same temperature.	1	

	Any example into which the overall reaction may be divided.	1/2	
	(c) $\Delta U = q + w$	1/2	
	For isothermal reversible change:	1	
	q = -w = nRTln (Vf/Vi)		
27.	= 2.303 nRT log (Vf/Vi) (Any two) Mass of copper = 100 g		3
	Molar mass of copper = 63.5 g		
	Moles of copper = $100/63.5$	1/2	
	Molar heat capacity of copper = 24.5 J/K/mol		
	$\Delta T = 10$		
	$q = m \times c \times \Delta T$	1/2	
8	$= (100/63.5) \times 24.5 \times 10$	1/2	
	= 385.8 J	1/2	
	= 0.3858 KJ	1	
28.	Step-1		3
	HIC TCI + ANCII - CHI + AICLI	4	
	methylium iou (electrophile)	1	
	Step-2	à .	
	ch,	1	
	Resonance stabilized carbocation		
	Step-3	1	
	· HCI · AICI,		

	Section-D	•	
29.	(a) When light of a particular frequency is directed on a metal, electrons can be ejected from the surface of the metal.		4
	This phenomenon is known as the photoelectric effect.	1	
	(b) The electron will have kinetic energy due to extra energy as compared to threshold energy.	1	
	(c) Let λm = Longest wavelength of light	1	
	$(hc/\lambda m) = w_0$ (work function)		
	$\lambda m = hc/w_0 = (6.626 \times 10^{-34}) \times (3 \times 10^8) / (2.0 \times 1.6 \times 10^{-19})$		
	= 621 nm	1	
	OR	3	
	Threshold energy = $3.84 \times 10^{-19} \text{ J}$		
	Energy corresponding to given wavelength:	1/2	
	$E = hc / \lambda$		
	$= (6.626 \times 10^{-34}) \times (3 \times 10^{8}) / 480 \times 10^{-9})$		
	$=4.1 \times 10^{-19} \text{ J}$	1	
	Yes it will be enough to provide kinetic energy to the emitted		
	photon.	1/2	
30.	(a) The organic compound has covalent bond between C and Cl hence no ionisation takes place easily to test for chloride.	1	
	(b) The sodium fusion extract is first boiled with concentrated nitric acid to decompose cyanide or sulphide (in case S and N are present) of sodium formed during Lassaigne's test. Otherwise these ions will interfere with	1	
	silver nitrate test and result in other color formation.	1	
140,00	· ·	1	

(c)	In this test blue colour is obtained when only introgen is
	present whereas red colour is obtained when both nitrogen
	and sulphur are present. However complete fusion with
	Sodium produces blue colour for Nitrogen.

The blue coloured compound is named as iron(III)
hexacyanoferrate(II) / (ferriferrocyanide)/hexacyanido

ferrale (II)

OR

$$6\text{CN}^- + \text{Fe}^{2+} \rightarrow [\text{Fe}(\text{CN})_6]^{4-}$$

$$3[{\rm Fe(CN)}_6]^{4-} + 4{\rm Fe^{3+}} \rightarrow {\rm Fe_4[Fe(CN)}_6]_3.x{\rm H_2O}$$

Prussian blue

$$Na + C + N + S \rightarrow NaSCN$$

$$\label{eq:Fe3+} \begin{split} \mathrm{Fe^{3+}} + \mathrm{SCN^-} &\to [\mathrm{Fe(SCN)}]^{2+} \\ &\quad \quad \mathrm{Blood} \ \mathrm{red} \end{split}$$

Section-E

CH3 (a) CH₃ H₃C CH

(b) Wurtz Reaction

$$2\mathrm{CH_3CH_2CH_2-Cl} + 2\mathrm{Na} \ \underline{\quad \text{dry ether} \quad} \mathrm{CH_3CH_2CH_2CH_2CH_2CH_3} + 2\mathrm{NaCl}$$

Propyl chloride

n-hexane

- (c) Huckel's rule : A Cyclic, Planar molecule is considered to be Aromatic if it has $(4n + 2)\pi$ electrons.
- (d) The ethane molecule gains thermal or kinetic energy sufficient enough to overcome this energy barrier of 12.5 kJ/mol through intermolecular collisions.

1

 $1 \times 5 = 5$

1

1

1

1

1

1

31.

(e)	9 sigma bo	nds and 2 p	oi bonds			1	
(f)	Buy-2-yne	< Propyne -	< Ethyne			1	
	There is no	acidic hyd	rogen in B	ut-2-yne.	Ethyne is		
	more acidio	than propy	ne due to	presence o	of 2 acidic		
	H atoms, a						
	propyne wh	ich exerts -	I effect &	makes it	less acidic.		
(g)	2					1	
	ortho-and p		n and more	e electron	density at		
	meta- positi						
	(Any 5 to b	e done)					
(a)	The mass u	nit equal to	exactly on	e-twelfth	the mass of		
	one atom of	carbon-12	is called on	e atomic	mass unit.	1	
(b)	mass spectr	ometry				1	
(c)	Element	Msss %	Atomic	Moles	Simplest		
			mass	Moles	ratio		
	Н	2.46	1	2.46	2		
	S	39.06	32	1.22	1	2	
	. 0	58.48	16	3.65	2.99 = 3		
	Empirical fo	rmula = H	SO.			1/2	
	Empirical fo			+ 48 = 82	o'	2.7	
	Given molar			10 - 02	В	17	
				1 C	1	1/2	
	Hence molecular the same.	cuiar iormu	ia and Emj	oirical for	nula are		
	uro samo.	OB					
	*	OR					
(a)	1 Molar is n				1	1	
1	is in I litre	solution but	tin I m. 1	male of so	Muto ic in		- 1

	(b)	Mass % = 32		
		Density = 1.16 g/cm^3		
		Let mass of solution be 100 g then	1	
		Volume of the solution = mass/density		
Ì		= 100/1.16 = 86.20 ml		
		Volume in litres = 0.0862 L	1	
	Mol	es of HCl = 32/36.5 = 0.876 moles		
	Mol	arity of the solution = 0.876/0.0862 = 10.16 M	1 _	
	(a)	Conjugate acid: NH ₄ ⁺	1/2	
		Conjugate base : NH ₂ -	1/2	5
	(b)	Buffer keeps the pH maintained to control malfunctioning		
		of living systems / Buffer controls the pH changes.	1/2	
		e.g. NH ₄ Cl and NH ₄ OH		
	(c)	Kc for the reaction = 1×10^{-8}	1/2	
		Reaction quotient (Qc) = $\frac{\left[SO_3\right]^2}{\left[SO_2\right]^2\left[O_2\right]}$	1	
		$=\frac{(10^{-5})^2}{(2\times10^{-5})^2\ (10^{-5})}$	1	
		$= 5 \times 10^4$		
		As Qc > Kc, the reaction will proceed backward.	1	
		OR		
	(a)	The dissociation of H_2S decreases on adding strong acid HCl to it as H ⁺ from HCl is common ion which suppresses the ionisation of H_2S decreasing the concentration of Sulphide ions in solution.	1	
		This phenomena is called Common ion effect.	1	

33.

(b) The ksp of AX =
$$4 \times 10^{-36}$$

$$AX \rightleftharpoons A^+ + X^-$$

S S (S is solubility)

$$\mathrm{Ksp} = \mathrm{SXS} = 4 \times 10^{-36}$$

$$S = 2 \times 10^{-18} \text{ Mol/L}$$

Ksp of MX
$$_3=2.7\times 10^{-27}$$

$$MX_3 = M^{3+} + 3X^{-}$$

$$Ksp = S$$
 3S

$$Ksp = S \times (3S)^3$$

$$27 \text{ S}^4 = 2.7 \times 10^{-27}$$

$$S^4 = (27/27) \times 10^{-28}$$

 $\begin{array}{c} S^4 = (27/27) \times 10^{-28} \\ S = 10^{-\frac{1}{2}} \\ \text{Ratio of solubilities} = S \text{ (AX)/S (MX}_3) \end{array}$

$$= 2 \times 10^{-18}/10^{-7}$$

$$= 2 \times 10^{-11}$$

1

1

1

MS/Chemistry

10